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Theory of q-Deformed Forms. III. q-Deformed 
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Equation 
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In this paper we introduce the q-deformed Hodge star operator, q-deformed 
inner product, and q-deformed adjoint of the q-deformed exterior derivative and 
investigate their properties. Using this mathematical background, we construct 
the q-deformed self-dual Yang-Mills theory. 

1. INTRODUCTION 

Quantum groups provide a concrete example of noncommutative differ- 
ential geometry (Connes, 1986). The idea of the quantum plane was first 
introduced by Manin (1988, 1989). The application of noncommutative differ- 
ential geometry to quantum matrix groups was made by Woronowicz (1987, 
1989). Wess and Zumino ( 1990; Zumino, 1991) considered one of the simplest 
examples of noncommutative differential calculus over Manin's quantum 
plane. They developed a differential calculus on the quantum hyperplane 
covariant with respect to the action of the quantum deformation of GL(n), 
so-called GLq(n). Much subsequent work has been done in this direction 
(Schmidke et al., 1989; Schirrmacher, 1991a,b; Schirrrnacher et at., 1991; 
Burdik and Hlavaty, 1991; Hlavaty, 1991; Burdik and Hellinger, 1992; Ubri- 
aco, 1992; Giler et al., 1991, 1992; Lukierski et al., 1991; Lukierski and 
Nowicki, 1992; Castellani, 1992; Chaichian and Demichev, 1992; Chung, 
n.d.-a,b). 
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In part I (Chung et  al . ,  1996) of this series of papers we proved associativ- 
ity of the q-deformed wedge product and showed that the q-deformed wedge 
product satisfies a particular commutation relation. 

In part II (Chung, 1996) we introduced the q-deformed differential forms 
and quantum-algebra-valued q-deformed forms. We used these to obtain the 
q-inner derivative and discussed its properties. We used these results to 
discuss the q-deformed Hamilton equation. 

In this paper (part III) we introduce the q-deformed Hodge star operator, 
q-deformed inner product, and q-deformed adjoint of the q-deformed exterior 
derivative and investigate their properties. Using this mathematical back- 
ground we construct the q-deformed self-dual Yang-Mills theory. 

2. q-DEFORMED HODGE STAR 

In this section we introduce the q-deformed Hodge star operator and 
investigate its properties. Throughout this paper we adopt the conventions 
and notations given in parts I and II. From part II we have the following 
commutation relations between the q-deformed differential forms: 

dr  / A u dxJ = ( - q )  dx j ^q d#' (i > j )  

dx  i ^q dx  i = 0 ( i , j  = 1, 2 . . . . .  N) (1) 

where the q-deformed wedge product ^q reduces to the usual wedge product 
when q goes to 1. The relation (1) can be written in the form 

dx  i ^q  dxJ = (-q)p~iJ)dxJ ^u d ~  (2) 

where the symbol P ( i j )  is defined as 

P ( i j )  = 1 (i > j )  

P ( i j )  = 0 (i = j )  

P ( i j )  = - 1 (i < j )  

Now we introduce the Hodge star operator (*) as follows 

1 
* d r  t - - -  E u ( q  -2) dx  "t (3) 

[N - p]! 

where E u ( q  -2) denotes replacing q with q-2 in the q-deformed Levi-Civita 
symbol defined in parts I and II and I and J denote il, iz . . . . .  i~, and jr, Jz, 
. . . .  JN-p, respectively. Now we show that the Hodge star operator satisfies 
the following properties: 

**d3f/= (--q-Z)P(N-p)Nx I (4) 



Theory of q-Deformed Forms. III 1109 

where oLd is a q-deformed p-form. In obtaining (4) we used the following 
properties of the q-deformed Levi-Civita symbol: 

X' _ _2,~,o(N_p)Ril  Ri  2 . .  ~ i  E u ( q - 2 ) E j x ( q  -2) ( 7' 
J,Jl < J 2 < ' "  < J N - p  

(5) 

where the q-symmetrizer is defined in Chung et  al. (1994) .  The q-symmetrizer 
satisfies the following property: 

~il ~i2 . .  ip d x  x = [p]!  dx  t (6)  
U[k t u//.2 " ~ k p l q -  2 

K 

The general proof is given in the Appendix and here we show that (4) holds 
for the N = 4 and p = 2 case. Let us consider the two-form 

dx i ^q d.x; (i < j )  (7) 

Then we have 

1 - ~  d x  k *(dx  ~ Aq d x  j )  = ~ Eijtl( q ") Aq d x  t 

= ~ Eid, l(q - z )  d x  k ^q dx  t 
k<l  

Applying the Hodge star operation to the two-form (7) twice, we find 

**(dx  i ^q  dr, -i) = ~ Eiikt(q-Z)*(dx ~ ^q  d x  t) 
k<l  

__ I ~ Eiikt(q-Z)E~t,,,,(q - z )  d x  m ^q  d x "  
[2]! k<t 

_ 1 (_q-2)4(gi~j  _ q-2~i~j)  dx m Aq N.X n 
[21! 

= (q-2)4X/ Aq dx j 

where we used the properties 

= ( q ) ( ~ m ~  n __ q-Z~,~j~,,) for i < j Eo~t(q-2)Eklm,(q-2) _ -2 4 i j 
k<l  

and 

dx  it ^q  " '"  ^q  dx  iu = Eiv. . iN(q - z )  dxl  /xq " '" d x  N (8) 
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3. q-DEFORMED INNER PRODUCT 

In this section we discuss the q-deformed inner product (scalar product). 
Consider the following two q-deformed p-forms ap and 13.: 

O[p = £ 
il<...<ip 

jl <" "<jp 

Then we define the q-deformed inner product as the integral 

(3{il...,}~ d x  il Aq " '"  Aq d x  ip 

[3Jt h, dxJt ^q "'" ^u dxJ; 

(% [3,) = 1% [3, (9) 

where *13p is given by 

*[5, = ~ f3j,...jpEj,...Mp+,...ju(q -2) d x  jp+I Aq ' ' "  Aq d x  jN 
j[ <" "<jp,jp+ l <" "<jN 

Computing the q-deformed inner product, we obtain 

= f (--'°-2"12{*£~=lik-6)Ot" " ~ dxI  (%, f3 ) '. "1 1 q...tpt..,il...ip INq " '"  Aq d x  N (10) 

The proof is easy. We have 

(O~p, ~p) = f O~il...ip d x  il Aq " '"  Aq dxip Aq 

[3j,...h,E./,...jpjp+ v-7N(q-Z) dxh'+ I ^u "'" ^q dxm 

= I OtiI '" ip~JI"jpEjI"JPJP+I"JN(q-2) d'xJ°+l 

X Eit...ipjp+l...jN(q -2) dx)p +j dx I Aq "'" Aq d.X N 

f (__q-2)2(~= lik-6)Otil...i,~il...ip dx l  Aq " '"  Aq dx Iv 

where we used the contraction rule for the q-deformed Levi-Civita symbol, 

Ejl. . jpJp+ l . . jN( q -  2) Eil. . .ipjp+ l. . .jN( q -  2) = (_q-2)2(g~.=lik-6)~{~l~j~ . . .  ~ iNlq_ 2 i N  

(11) 

The q-deformed inner product has the further property that 

(%, [3p) = (13p, ap) (12) 
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because of the identity 

#, ,  = (13) 

4. q - D E F O R M E D  A D J O I N T  OF q - D E F O R M E D  E X T E R I O R  
D E R I V A T I V E  

In this section we discuss the q-deformed adjoint of the q-deformed 
exterior derivative. We define the q-deformed adjoint of the q-deformed 
exterior derivative d as 

.= __(__q-2)-(N-p+ 2)(p-1)*d, (14) 

The q-deformed adjoint has the property 

(~o 9, [3p-i) = (0 9, d[3p-O (15) 

We will prove the identity (15) as follows. By definition we find 

(Sa~,, f3p_t) = (f3p-i, ga D 

j f3e_l ^** d*% ~ ( ~ Q ~ 2 )  ~ ( N ~ p ~  2)(P ~1  ) 

= _ ( _ q-2)-(u-e+2)(p- I)(_ q- 2)(U-p+ I)(e- I) f 

f 13p_ 1 ,',q d*ap 

= _(_q-Z)-(e-I) f ~ir"q,-i dxq Aq 

× d*(ogl...jp dxJJ/',q"" Aq d~cJe) 

where we note that 

ij < "'" < / p _ , ,  J' < "'" <Je  

Then the right-hand side is 

= __(__q-2)-(p-l) f ~il...ip_l d.xil Aq ' ' °  Aq dx i"-I 

X d(otjv..jpEjl...jpjp+ I "JN I~L~J#+ 1 Aq " ' "  Aq dx jN) 

~p- 1 Aq d*otp 

. . .  ^ .  dxi~ -' 
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= --(--q-2)-(P-I) I ~i,...ip_la,ogl...jEjj...h,jr+t... m 

X d x  4 ^ q  . . "  ^ q  d3dp -I Aq d x  ~ ^q  dx  jp+I Aq "'" Aq dx  iN) 

_ ( _ q - 2 ) - ( p - I )  I ~it'" .ip-tOaOLjl" "jpEjv" "jpjp+ I"" .mEil .. .ip_ wJp+ r'  "JN 

X dx I ^ q . . .  ^q d x  u 

= _(_q-2)- (p-I )  f ~il...ip_13aOLjl... 8j I Jp-I J "Jp tl " '" 8 i p _ l ~  

X ( - q - Z ) Z ( ~ = l J , ~ - 6 ) d j f l e ' "  ^q dx  N 

= __ (__q-2)-(p-I) f ~it...ip - iOaOLil. " "ip-la(-- q-2)2(X~-lik+a-6)d, xI ^q 

= (__q-Z)-(p-I) 

f -2 2(-~,~-- lik +a- 6)dx I d,vN X OLil...ip_laOa~il...ip_,(-- q ) -" Aq "'" Aq 

= f Otait...ip_lOa~il...ip_i(--q-2)2(X~'Z-lik+a-6)dx t ^q  " '" mq d-A d't 

I a, ^* d~, 
= (0% d13.) 

which completes the proof of the identity (15). 

• . .  ^q  dx  N 

5. q-DEFORMED SELF-DUAL YANG-MILLS EQUATION 

In this section we use the formulas given in part II to discuss the q- 
deformed Maxwell and Yang-Mills theory. Let us define the q-vector 1-form 
a e AIq(V), 

A = ~ Ai dx' (16) 
i 

The q-deformed field strength 2-form F is defined by acting with the q- 
exterior derivative d, 
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If we define F as 

then we have 

which implies that 

F = d A  

o dx j = £ (OiAj + E)iOjAi) dx i Aq 
i<j 

# 
= 2 (oiaj + E)iOjai) dx i Aq dxJ 

i>j 

F = ~ Fij dx i ^q dxJ 
i<./ 

= ~, Fo ax ~ ̂ q ~ J  
i>j 

1 dxJ = - ~  Fodx i Aq 

o Fq = OiAj + EjiOjAi 

F O = o i m  j - q-IOjAi (i < j )  

F o = 8iAj - qOjA, (i > j )  

Therefore we have 

F 0 : - q - 'F j i  

If we define the dual tensor *Fq as 

*F 0 = ~ Ektij(q-2)Fq 
k<l 

(i <j )  

(i < j )  

then we have the following q-deformed self-dual condition: 

* F  = P 

where P is defined as 

P = ~ ~, Ekt,j(q-2)Fii dx ~ ̂ u dxJ 
i<j k<l 

These can be written for each component as follows: 

*Fi2 = (-q-2)4F~2 

*Fi3 = (-q-2)3Fl3 

*FI4 = (-q-2)ZFI4 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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which implies that 

*F23 = (-q-2)2F23 (30) 

*F24 = ( -q -2 )F24  (31) 

*F34 = F34 (32) 

FI2 = F34 (33) 

FI3 = F24 (34) 

F23 = FI4 (35) 

Now we generalize the q-deformed self-dual Maxwell equation to the 
q-deformed Yang-Mills equation. Let us introduce the quantum-algebra- 
valued q-deformed vector 1-form 

A = A~ d #  T a (36) 

and the q-deformed field strength tensor 2-form 

F = DA = dA + t [A .  A]q (37) 

If we define the q-deformed field strength tensor 2-form by 

F = E ro 
i<j 

= F~fl:¢ ^q dxJ T~ 
i>j 

1 
= - 2 ~  FijdJd" / ' q  dxj T, (38) 

we have 

F~ = OiAj a q-IOjA~ + I b c -- ~f,t,c(AiAj + q-lA~A~) (i < j )  

F'~ cgia ~ qOgA'{ + i b ,- = -- ~faoc(Ai aj  + qA~Abi) (i > j )  (39) 

If we demand that the commutation relation between Aj and A~ is given by 

c b Aja i  = q-'AbiA~ (j < i) 

c b AjAi  = qAtAr  (j > i) (40) 

then the q-deformed field strength tensor is given by 

F~. OiA ~ q-JOiA ~ b ,- = -- + f , hcA iA j  (i < j )  

F~ OiA) qOjA a b c . . . .  +f~bcAiAj  (i > j )  (41) 
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Then the q-deformed self-dual condition is obtained in analogy with (25) 
as follows: 

E - 2  o = Ekto(q )Fo (i < j )  (42) 
k<l 

*F = f (43) 

where f is defined as 

f ~ ~ -2 ,~ dx i dx i To (44) = Ek~ii(q )Fo % 
i<j k<l 

6. CONCLUSIONS 

In this paper we have used the q-deformed differential forms and quan- 
tum-algebra-valued q-deformed forms given in part II to obtain a q-deformed 
Hodge-dual operator, q-deformed inner product, and q-deformed adjoint of 
the q-deformed exterior derivative and have discussed their properties. As a 
physical application, we have discussed the q-deformed self-dual Maxwell 
equation and Yang-Mills equation. In this case we find that the ordinary 
self-dual condition should be q-deformed in a more complicated form. We 
think that much will be accomplished in this direction. In particular we 
hope that the q-deformed Lagrangian equation of motion of the q-deformed 
mechanics and q-deformed Maxwell and Yang-Mills theory will be clarified 
in the near future. 

APPENDIX. PROOF OF EQUATION (4) 

By definition we have 

1 ~ Eq(q_2) dx J *(dxt) - IN - p]! g 

= Eu(q -2) dx J 
J,ordered 

Acting with the Hodge star operator again, we find 

1 
**(dXt) = E EiJ(q -2) E ~ .  EjKEjK(q -2) 

J,ordered K 

= [ ~ "  (_q-Z)p(N-p~ °l*tuk2 . ,,lq_2 

= (--q-2)p(N-P)dx t 

which completes the proof of (4). 

dx x 
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